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Abstract. Quantum phase transitions in two layers of ultrasmall Josephson junctions, coupled
capacitively with each other, are investigated. As the inter-layer capacitance is increased, the
system at zero temperature is found to exhibit an insulator-to-superconductor transition. It is
shown that, unlike in the case for one-dimensional arrays with a similar coupling configuration,
the transition cannot be accounted for exclusively by particle–hole pairs.

Capacitively coupled systems of charges have attracted significant attention in recent years,
raising the possibility of current drag effects: the current fed through either of the systems,
owing to Coulomb interaction, induces a secondary current in the other system. Such
a drag effect depends strongly on the dimensionality and the structure of the system as
regards its mechanism and behaviour. The current drag in two capacitively coupled two-
dimensional (2D) electron gases [1] was attributed to a momentum-transfer mechanism due
to Coulomb scattering [2] and is fairly small in magnitude. By contrast, recent theoretical
predictions [3] and experimental demonstrations [4, 5] with two capacitively coupled one-
dimensional (1D) arrays of submicron metallic tunnel junctions have shown that the primary
and the secondary currents are comparable in magnitude but opposite in direction in a certain
region of applied voltage. In such tunnel junction systems, the current drag is attributed
to the transport of electron–hole pairs, which are bound by the electrostatic energy of the
coupling capacitance. Lately, it has been suggested that the momentum-transfer mechanism
can also lead to absolute current drag in 1D electron channels coupled electrostatically with
each other [6]. The current drag effects in capacitively coupled 2D arrays of tunnel junctions
have not been studied and will be examined in this work.

More interestingly, when the tunnelling junctions are composed of ultrasmall super-
conducting grains, the counterpart of the electron–hole pair becomes the pair of excess and
deficit Cooper pair, which will simply be called the particle–hole pair. Furthermore, in
such ultrasmall Josephson-junction systems the competition between the charging energy
and the Josephson coupling energy is well known to lead to novel effects of quantum
fluctuations [7–10]. Combined with these quantum fluctuation effects, the pair transport
phenomena in coupled 1D Josephson-junction arrays (JJAs) have recently been proposed to
drive an insulator-to-superconductor transition [11].

In this paper, two 2D arrays of ultrasmall Josephson junctions, coupled capacitively with
each other, are considered. Quantum phase transitions are examined at zero temperature,
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focusing on the roles of the particle–hole pairs. The system is transformed into two three-
dimensional (3D) systems of classical vortex loops, which aretopologically coupled but
otherwise independent of each other. The resulting model reveals that as the coupling
capacitance increases, in appropriate regions of parameters, the system exhibits an insulator-
to-superconductor transition. Contrary to the 1D counterpart with a similar coupling
scheme [11], the transition cannot be ascribed exclusively to the condensation of the
particle–hole pairs. Accordingly, it is also remarked briefly that the accompanying drag
of supercurrents in the superconducting phase is not absolute in general. In the vicinity of
the transition, however, the particle–hole pairs still play major roles, and therefore current
drag can be large.

As a matter of fact, capacitively coupled 2D JJAs have been studied by several authors,
but in a different context and for different regions of parameter space [12]. Besides,
the capacitive coupling should be distinguished from the Josephson coupling such as that
considered in multi-layered systems [13]. The capacitively coupled JJAs can presumably
be realized in experiment by current techniques, which have already made it possible to
fabricate submicron metallic junction arrays with large inter-array capacitances [4, 5] as
well as large arrays of ultrasmall Josephson junctions [14].

CI

C1

C0

�V=2+V=2

Figure 1. A schematic side view of the system. Each chain in the figure represents a 2D array.

Each of the two arrays (` = 1, 2) of Josephson junctions considered here is character-
ized by the Josephson coupling energyEJ and the charging energiesE0 ≡ e2/2C0 and
E1 ≡ e2/2C1, associated with the self-capacitanceC0 and the junction capacitanceC1,
respectively (see figure 1). The two arrays are coupled with each other by the capacitance
CI , with which the electrostatic energyEI ≡ e2/2CI is associated, while there is no Cooper-
pair tunnelling between the arrays. The intra-array capacitances are assumed to be so small
(E0, E1 � EJ ) that, without the coupling, the two arrays would each be separately in the
insulating phase [8]. It is also assumed that the coupling capacitance is sufficiently large
compared with the intra-array capacitances;CI � C0, C1. In that case, the electrostatic
energy of the particle–hole pair (∼EI ) is much smaller than that of an unpaired charge
(∼E0, E1); the particle–hole pair, bound by the binding energy of order ofE0 − EI or
E1 − EI , is thus much more favourable than the unpaired charges. For the most part, this
work is devoted to the case of identical arrays, but non-identical arrays will also be briefly
discussed.

The system can be well described by the Hamiltonian

H = 1

4K

∑
`,`′

∑
r,r′

n(`; r)C−1(`, `′; r, r′)n(`′; r′)− 2K
∑
`

∑
〈rr′〉

cos
[
φ(`; r)− φ(`; r′)]

(1)
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wherer ≡ (x, y) denotes the 2D lattice vector in units of the lattice constant, the coupling
constant has been defined by

2K ≡
√
EJ/4EI

and the energy has been rescaled in units of the Josephson plasma frequency

h̄ωp ≡
√

4EIEJ .

The numbern(`; r) of excess Cooper pairs and the phaseφ(`; r) of the superconducting
order parameter on the grain atr in array` are quantum mechanically conjugate variables:

[n(`; r), φ(`′; r′)] = iδrr′δ``′ .

The capacitance matrix in equation (1) takes the form

C =
(
C 0
0 C

)
+ 1

2

(
1 −1
−1 1

)
(2)

where the submatricesC(r, r′) are defined by the Fourier transform

C̃(q) = C0+ C11(q)

with 1(q) ≡ 1(qx) + 1(qy); 1(k) ≡ 2(1 − cosk). Here all of the capacitances have
been rescaled with respect to the relevant capacitance scale 2CI : C0/2CI → C0 and
C1/2CI → C1.

v
+

�

v
�

�

Figure 2. Topological coupling ofv+µ and v−µ . At each space-time positionEr, (v+µ , v−µ ) can
take only half of the elements inZ× Z as depicted with open circles in the figure.

It is convenient to write the partition function of the system in the imaginary-time path
integral representation

Z =
∏
`,r,τ

∑
n(`;r,τ )

∫ 2π

0
dφ(`; r, τ ) exp[−S] (3)

with the Euclidean action

S = 1

4K

∑
`,`′

∑
r,r′,τ

n(`; r, τ )C−1(`, `′; r, r′)n(`′; r′, τ )

− 2K
∑
`

∑
r,τ

∑
j

cos∇jφ(`; r, τ )+ i
∑
`

∑
r

n(`; r, τ )∇τ φ(`; r, τ ) (4)
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where∇j (j = x, y) and∇τ denote the difference operators in the spatial and the imaginary-
time directions, respectively, and the (imaginary-) time sliceδτ has been chosen to be unity
(in units ofω−1

p ) [15]. The highly symmetric form of equation (4) with respect to space and
time makes it useful to introduce the space-time 3-vector notationEr ≡ (r, τ ), and analogous
notation for all other vector variables. We then apply the Villain approximation [16] to
rewrite the cosine term as a summation over integer fields

{mx(`; Er),my(`; Er)} ≡ {m(`; Er)}.
Further, with the aid of the Poisson resummation formula [16] and Gaussian integration,
we rewrite the charging energy term as a summation over another integer field{mτ(`; Er)},
to obtain the partition function

Z ∼
∏
`;Er

∑
Em(`;Er)

∫ ∞
−∞

dφ(`; Er) exp{−S} (5)

with

S = K
∑

`,`′;Er,Er′
C(`, `′; r, r′)δττ ′

[∇τ φ(`; Er)− 2πmτ (`; Er)
] [∇τ φ(`′; Er′)− 2πmτ (`

′; Er′)]
+ K

∑
`;Er

[∇φ(`; Er)− 2πm(`; Er)]2
. (6)

The variablesφ(`; Er) and Em(`; Er) can be usefully replaced byφ±(Er) ≡ φ(1; Er)± φ(2; Er)
and Em±(Er) ≡ Em(1; Er) ± Em(2; Er), respectively. In this way, one decomposes the Euclid-
ean action in equation (6) into the sumS = S+ + S− with S± defined by

S± = +1

2
K
∑
Er,Er′

C±(r, r′)δ(τ, τ ′)
[∇τ φ±(Er)− 2πm±τ (Er)

] [∇τ φ±(Er′)− 2πm±τ (Er′)
]

+ 1

2
K
∑
Er

[∇φ±(Er)− 2πm±(Er)]2
. (7)

Here the new capacitance matricesC±(r, r′) are defined via the Fourier transforms
C̃+(q) = C̃(q) and C̃−(q) = 1 + C̃(q), respectively. Now one follows the standard
procedures [17, 8] to integrate out{φ±(Er)}. Then, apart from the irrelevant spin-wave part,
one can finally obtain the 3D system of classical vortex lines, which is also decomposed
into two subsystemsHV = H+V +H−V with

H±V = 2π2K
∑
Er,Er′

∑
µ

v±µ (Er)U±µ (Er − Er′)v±µ (Er′) (8)

where the interactions between vortex line segments are defined via their Fourier transforms

Ũ±‖ (Eq) =
C̃±(q)

1(q)+ C̃±(q)1(ω)
(9)

Ũ±τ (Eq) =
1

1(q)+ C̃±(q)1(ω)
. (10)

Here the vortex linesv−µ are manifestations of the particle–hole pairs, whereas thev+µ stand
for single-particle processes [11]. Note that, in equation (8), the fields{v±µ (Er)} are subject

to the constraintE∇ · Ev±(Er) = 0; i.e., all vortex lines either form closed loops or go to
infinity. More importantly, it should also be noticed that the two fieldsv+µ andv−µ cannot
be independent of each other, sincemµ(1; Er) and mµ(2; Er) in equation (7), and hence
vµ(1; Er) = [v+µ (Er) + v−µ (Er)]/2 andvµ(2; Er) = [v+µ (Er) − v−µ (Er)]/2, can take only integer
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values. As depicted with open circles in figure 2,(v+µ , v
−
µ ) at eachEr can take only half

of the elements in the product set of integersZ× Z; v+µ andv−µ are topologically coupled
with each other. Contrary to the case for the capacitively coupled 1D JJAs [11], this topo-
logical coupling plays crucial roles in the present case, which will be discussed in more
detail below.

It is not difficult to understand the physics described by each of the HamiltoniansH±V .
UnlessC0 = 0, the length-scale dependence of the anisotropy factorC̃+(q) = C̃(q)� 1 is
screened out at length scales larger than

√
C1/C0, and therebỹU+µ (Eq) is simply reduced to

the highly anisotropic current-like interaction:

Ũ+‖ (Eq) ' C0/[1(q)+ C01(ω)] Ũ+τ (Eq) ' 1/[1(q)+ C01(ω)].

Such an anisotropic model has been studied in reference [17], and is known to exhibit
an anisotropic 3D transition which is associated with the disruption of the vortex loops,
at K = K+c close to the 2D Berezinskii–Kosterlitz–Thouless (BKT) transition point [18]:
K+c ∼ 2/π . In the case ofC0 = 0, the vortex linesv+µ even form 2D pancake vortices
residing on decoupled 2D layers with

Ũ+‖ (Eq) ' C1/[1+ C11(ω)] Ũ+τ (Eq) ' 1/1(q)[1+ C11(ω)]

and the phase transition is precisely BKT-type. In any case, the system of vortex linesv+µ
exhibits a phase transition atK = K+c ∼ 2/π . On the other hand, neglecting the anisotropy
at short-length scales,̃U−µ (Er) are isotropic in space-time:

Ũ−‖ (Eq) ' Ũ−τ (Eq) ' 1/[1(q)+1(ω)].
In consequence, it follows that the system of vortex linesv−µ exhibits the isotropic 3DXY -

type phase transition atK = K−c ∼ 1/2
√

2. At this point, one might be tempted to conclude
that, asK is increased, the total systemHV might go through two successive transitions,
one atK−c and the other atK+c , the first of which would be ascribed to condensation of
particle–hole pairs [11]. This scenario of successive transitions, however, should be tested
against the topological coupling discussed above betweenv+µ andv−µ .

For this goal, it is convenient to consider the subsystem{v∗µ} of {v+µ } satisfyingv−µ = 0.
In this subsystem,v∗µ(Er) can take only even values, and hence the phase transition could
take place atK = K∗ = K+c /4∼ 1/2π , which is substantially lower thanK−c . This means
that vorticesv∗µ could be tightly bound even before the vorticesv−µ get bound, contradicting
the assumption thatv−µ = 0. Consequently, it follows that the actual phase transition should
take place atKc betweenK−c andK+c , and cannot be accounted for exclusively byv−,
i.e., by particle–hole pairs. This is distinctively different from the case of the capacitively
coupled 1D chains [11], where the vorticesv∗ in analogous subsystems always form a
plasma of free vortices regardless ofK in the presumed configurationC0, C1 � 1 and
the topological coupling is thus irrelevant; the free vorticesv∗ completely screen out the
interaction among the vorticesv+µ .

Nevertheless, it is evident that any correction of the vortex linesv+µ in the vicinity of
Kc is exponentially small in the creation energyµ+c of the smallest vortex loops (or nearby
pancake vortex–antivortex pairs whenC0 = 0): µ+c ∼ Kcπ [18]. In particular, the shift of
the transition pointKc with respect toK−c can be estimated by

(Kc −K−c )/K−c ∼ e−2µ+c ∼ 0.1 (11)

where the factor 2 in the exponent is due to the topological coupling.
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Now I examine briefly and qualitatively the current drag effects in the superconducting
phase, by means of the linear responseσ``′(ω) of the current in the arraỳ to the voltage
applied across the arraỳ′ (see figure 1):

σ``′(ω) = 1

iω
lim
q→0
G̃``′(q, iω′ → ω + i0+) (12)

whereG̃``′ is the Fourier transform of the imaginary-time Green’s function

G``′(r, τ ) =
〈
Tτ [I (`; r, τ )I (`′; 0, 0)]

〉
with the time-ordered productTτ and the current operatorsI (`; r) ≡ sin∇xφ(`; r) (since
the system is isotropic in thex- and y-directions, only the current in thex-direction is
considered here). Due to the symmetry between the two arrays, it follows that

σ11(ω) =
[
σ+(ω)+ σ−(ω)

]
/2 σ21(ω) =

[
σ+(ω)− σ−(ω)

]
/2

where theσ± are defined in a manner analogous to equation (12) with

I±(x) ≡ I (1; x)± I (2; x).
According to the discussion above on the phase transition, atK > Kc, both σ+ and σ−
show superconducting behaviour:σ±(ω) = σ 0

±δ(ω) (ω � 1), which means that the drag
of supercurrents along the two arrays is not perfect in general. However, in the vicinity of
the phase transition, whereσ 0

+ � σ 0
−, the currents in the two arrays can be comparable in

magnitude. This suggests the following: the particle–hole pair is not so tight as in the 1D
case, distributing over a few lattice constants. Yet it is still energetically favourable enough
to play significant (if not exclusively crucial) roles in the phase transition and the transport.

Before concluding, I remark briefly on non-identical arrays. The difference in the intra-
array capacitances leads to additional coupling between the vorticesv+µ and v−µ with the
coupling strength proportional to the difference. The arguments on identical arrays therefore
remain valid qualitatively as long as∣∣C̃(1; q)− C̃(2; q)∣∣� ∣∣C̃(1; q)+ C̃(2; q)∣∣ .
The difference in Josephson coupling energy, on the other hand, can be effectively
incorporated in the capacitance difference by renormalizing the parameters, since all of
the effects considered in this work depend only on the relative strength of the Josephson
coupling energy and the charging energies.

In conclusion, quantum phase transitions in two capacitively coupled 2D JJAs have been
investigated. In particular, it has been found that as the coupling capacitance increases,
in appropriate parameter ranges (EJ/E0, EJ /E1 � 1; EJ/E0, EJ /E1 � EJ/EI < ∞),
the system exhibits an insulator-to-superconductor transition. Contrary to the case for the
capacitively coupled 1D chains, the transition cannot be accounted for exclusively by the
condensation of particle–hole pairs. Accordingly, the drag of supercurrents along the two
arrays is not absolute in general.
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Jośe J V 1998Computer Simulation Studies in Condensed Matter Physicsed D P Landau, K K Mon and
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